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being significantly dependent upon the range of the
interatomic potential.

The method of lattice statics, on the other hand,
is exact within the harmonic approximation,
which is shown to be quite valid for the present
calculations. It appears, therefore, that the only
consistent method of calculating the direct-space
forces due to the defect and hence the strain-field
displacements and associated parameters is the
method of lattice statics. Certainly, it would
seem that any strain-field properties obtained as

a result of direct-space calculations in any of the
bce metals should be reappraised using the lat-
tice statics approach.
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A formalism is presented for the calculation of the spectrum of normal modes of a dis-
ordered solid by means of a perturbation theory that takes a mean-field model as its unper-
turbed system. A transformation is used that allows the long-range correlations in the low-
frequency vibrational modes to be accurately taken into account. In the special case of a
random substitutional alloy, a result is found which reduces to those of other workers when
the limit of small mass difference of the constituents or low concentration is taken. Some
aspects of the application of the theory to amorphous systems are also discussed.

I. INTRODUCTION

The topic of the dynamics of disordered systems
is at present a rather fragmented area of theoret-
ical physics, in that the concepts that have been
developed to discuss one type of disordered solid
are only rarely applicable to other systems. A
calculation of the spectrum of vibrational modes
of a substitutional alloy, for example, may be at-
tempted in a perturbation theory in which the pho-
non modes of a pure material form the unperturbed
states. The results may then be expressed as a

power series in either the concentration of one
element of the alloy! or the difference in mass of
the two elements.? Such methods, however, can-
not readily be applied to glasses or other materials
that are lacking in long-range order, in that there
is then no obvious Brillouin zone to limit the wave
numbers of whatever phonon spectrum is chosen
to represent the unperturbed system; in other
words, there is no one-to-one correspondence be-
tween the atomic sites in the glass and in any per-
fect periodic lattice except in the special case of
one-dimensional systems. The most fruitful ap-
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proach to calculating the vibrational spectrum of
glasses accordingly starts® with the Einstein or
mean-field model, in which such a one-to-one cor-
respondence does exist; the unperturbed system
then involves the independent motion of the N atoms
forming the glass about their equilibrium sites i
The difficulty here is that in the perturbed modes
of lowest frequency there is correlation between
the motions of atoms separated by large distances.
Perturbation theory must then be used in such a
way that various infinite sets of terms must be
summed if the spectrum is to display the correct
Debye form at low frequencies. In diagrammatic
language, the terms of such a series are repre-
sented as in Fig. 1 by closed paths linking the vari-
ous equilibrium sites i. The difficulty of perform-
ing infinite summations of such diagrams with only
limited statistical information about the locations
of the sites I does not need stressing.

The approach adopted in this paper represents
an attempt to combine the most useful features of
the previous approaches to these problems. We
take as our unperturbed system the Einstein model
but then perform a transformation which in the
limiting case of a perfect crystal would simply be
a reduction to phonon modes, and which for a
glassy system allows us to incorporate such know-
ledge as we have about the relative positions of the
atoms.

The principal advantage of this approach lies in
the fact that some separation is possible between
the concepts of structural disovder and dynamical
disordev. Structural disorder is represented by

(]

FIG. 1. Typical term in a perturbation theory based
on the Einstein model.
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the presence in the perturbation expansions of a
function Rg that vanishes for the case of a perfect
Bravais lattice, but which is nonzero in an amor-
phous system. Dynamical disorder, on the other
hand, arises from the variation from site to site
of the masses of the atoms and the forces connect-
ing them, and appears in the perturbation expan-
sions through a function B(i,§,d"): Thus the case
of an isotopically disordered alloy can be treated
as a power series in B alone. This particular ex-
ample is treated in some detail for a cubic crystal
in Sec. III of this paper, since it yields a very
simple result for the frequency spectrum that can
be compared with the results of other workers.
Section IV is devoted to a discussion of the validity
of truncating the renormalized perturbation series
for an amorphous solid: The conclusion reached
is that the presence of short-range order leads to
a rapid convergence of the power series in the
structural-disorder function.

II. FORMALISM

We start by considering an array of N atoms
whose equilibrium positions are defined by the vec-
tors I. The classical equations of motion for small
oscillations about these sites can be written in the
form

s
ol Tr I 1)
where y,(i) is the ith Cartesian component of the
displacement of an atom from its site i and the
K;;(1,1") are a set of coefficients defined by the
masses of the atoms and the interatomic forces
and are subject to the condition

2 K;A,10=0

For a mode of angular frequency w, Eq. (1) can be
written as

Z. [(wz— T)G'ﬁ’laij— Vij(i,i')]Vj(I')zo (2)

1

or more briefly as

Z (D"l)ij(i, i’, wz)yj(i'): 0, 3)
i

where
Vi, 0,10=- Kk, 1) - T611.5,; @)

and T is some suitably chosen constant. If we de-
fine M(w?) as the number of modes with frequency
less than w, then it can be shown that the density
of modes as a function of w? is given by

dn

dw?
with the Green’s function Dij(f, f’, w?) defined from
Eq. (3) by

=g@?)=~1" ImZ D;;A, 1,0+ in) , (5)
i,i
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'lijd, r, wz)Djk(i,, 1", %)= 6730064
and with n a vanishingly small positive quantity.
With the definition

Dy=(w?-T)!
one may write
D;;(0,1)=Dyd77:6;,+ D2V, (0, 1%
+ng21“ Vi [, 1)V, 104+« L (6)

The summation of this series forms the major
problem to be discussed in this paper.

If we were dealing with the problem of a perfect
Bravais lattice, then we could evaluate TrD, the
trace of the Green’s function, most directly by
making a transformation involving the matrix

STEZN-I/Ze-iq"'l' , (7)

with the N vectors q defined to lie within the first
Brillouin zone and to satisfy suitable periodic
boundary conditions. Under these conditions, the
matrix S is unitary and thus has the inverse

Ea.l,:N-l/Zei«'i"'f . ®)

In the more general case of an amorphous solid,
S is no longer unitary, and no simply defined Bril-
louin zone exists. Nevertheless, we shall retain
the definitions of S and E given in Eqs. (7) and (8)
and also assume periodic boundary conditions to
apply over a large volume £ of the disordered
solid, so that the density of allowed values in wave-~
number space remains uniform and equal to Q/87°.
We shall, however, leave open for the time being
the question of which N allowed values of d we
choose when performing summations over this
quantity. We look for the inverse of S by introduc-
ing a matrix Ry defined by the equation

(I+R)S'=E (9)

with I the unit matrix. Multiplication on the right
by S then yields the relation

Regp=N-1T;ei @ T g0 (10)
The matrix R will now be recognized as being re-
lated to the structure factor of the solid. In the
special case of a perfect lattice it vanishes for all

d and §’ within the first Brillouin zone. In the
general case we iterate Eq. (9) to find

S'=E-RE+R’E-... |

with R given by Eq. (10).

We now apply a transformation® to the interaction
term V and write
V=85"yss™
=S(E-RE+R*E~-++-

JS(E -RE+R2E—-+-).(11)
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This allows Eq. (5) to be rewritten in the form

glw?)==71"Im ;Dii(a, d, w?) , (12)
q,i
with
D@, §, w?)= Z foratl (O ) i PO (13)
Further,

(S™V;S)gg
=N 2 [G+R)- ]m,e

a",Y,I'

_N-IZ [(I+R) ]"'ll Z ei(a”-") i

ek 1

n.lVij(I’ i')e‘ia" i

X Vij(i., .1.'- i)eia'.ﬁ ) (14)

L";M

where in the last line L. has been written for i -1’.

In a perfect Bravais lattice the sum over L
would be independent of f, and would thus be a func-
tion only of 4. This will also be approximately
the case in many disordered systems: One may
visualize as an example a glass in which each atom
is surrounded by four others in a roughly tetrahe-
dral arrangement, Although the orientation of
these tetrahedra may vary from site to site, the
sum over L, may well be only weakly dependent on
this orientation. We accordingly consider this
sum as being composed of two parts - its average
over all I and its site-dependent deviation from
that average — and write

2 v, i-DeTov, @)+ u,,4,4).  (15)
with
21 U,;4,3)=0 . (16)

In terms of these quantities Eq. (14) becomes

(5V;,;8)sz0 = Vi ;@055 + W, @, T » 17)
with

Wi;(d, d)= Z[(I+R) Yege 22 B10,§",d)  (18)

1
and
B,(,§",§)=N"1'T - Ty, () (19)
Substitution of Eq. (17) in Eq. (13) allows us to
form an expression for the elements of the Green’s
function that are diagonal in d (although not neces-

sarily diagonal in the Cartesian coordinate system).
We find

D, ,(@,d, w?)=Dyd,;;+ DV, @)+ W, (J, §)]
+Dg Z [Vik(Q)é“‘" + Wzk(a) *P)]

3%k

X [V, (@)0g0g+ Wiy (@, D]+ .- -



)

- 2 (1 por) o 2, Wer® D@5 0).
ik q',m

Use of Dyson’s equation® allows us to express
D,,(d, §, »®)interms of the proper self-energy or
Dysonian M;,(q, w?). We have

D
& wi)= 0
Pu@ 8o )“§<1—Dov(a>>ik
X [6k1+z Mkm(a’ wz)ij(ay a; wZ)]

={[w?-T- V(@ - MG )]};. (20
The Dysonian M, (g, w?) is most simply defined

by illustrating its various components in diagrams
of the form shown in Fig. 2. This particular dia-
gram represents the product

(__ R)\....,( R)"l"'Bik(i, -.,,’ a,”

qq
X {[wa__T_ V(q"') }km mj( *r -lu -)

The sum of all such diagrams (the simplest of
which are shown in Fig. 3) in which the wave-num-
ber index of the propagator (w?- T - V)™ is not
equal to § forms M;;(d, w?). The cross at which
each vertical dashed line terminates denote the
atomic site 1 appearing in the function B;;.

II1. RANDOM SUBSTITUTIONAL ALLOY

As an illustration of this technique we consider
the well-known example of a random substitutional
alloy. In the simplest version of this problem the
force constants are assumed equal to those in some
pure material; the disorder enters the problem
only through the possibility of a given site i of the

J

where
yo=m/my— 1

and
1 - - >
J” (w?) ”ﬁ Z..: 1k(q')ij(q,,q';wz) .
q

Some further reduction shows that

’)’a’be(o_)z) -
[1=7,J3][1- 72 J @] Vi@, (21)

M@, w*)=-

3’ kym

B[ -3 T o] () Dy

DYNAMICS OF DISORDERED ALLOYS AND GLASSES 1755
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FIG. 2. Typical element of M;;(q, w?).

Bravais lattice being occupied by an atom of mass
either m, or m,, with respective probabilities c,
and c¢,. If we choose T equal to zero, then Eqgs.
(15) and (16) tell us that V;,(d) takes on the value
corresponding to a pure lattice of mass m, with
m the reciprocal of the average inverse mass:

m=mgmy /(camy+ cymy) .

Since R vanishes in this example, Eqgs. (18) and
(19) tell us that

caon L5 g
Wi,-(q,q')=ﬁ; a-an) 1<m1 —1> Vi@ .

We form an approximate expression for the
Dysonian by evaluating the diagrams shown in
Fig. 4. In this figure the occurrence of the same
site T in two or more factors of B;;({,d,3"") is
shown by terminating the dashed lines at the same
cross. The heavy lines replacing the light hori-
zontal lines of Fig. 2 indicate that the propagator
[w? = T - V(@] has been replaced by D(J, d, »?) in
an approximate renormalization, the principal
defect of which is the fact that the wave number §
is not excluded® from the terms comprising D.
One then has

Vi (@

z Yul@) p gy Y@,

N

ftoe o) IRCLUE

[

and so
D, 0 ={[w® - FAV@]"}, | (22)

where

Fij(w2)=5ij"([

Ve 7pd (@?)
l—yaJ(w%)][l-be(wz)]>ij - (23)

It is thus only necessary to solve the integral equa-
tion

s o (e 1
’ Nk Vik(Q)((mm)kj @4)
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FIG. 3. Expansion of M;;({, w? in powers of B (repre-
sented by vertical dashed lines) and R.

to obtain an expression for D;,(d, d, w?) and hence

the density of states g(w?).
It is interesting to note that if the concentration

of one of the elements of the alloy is small, then
the Dysonian may be expanded in a power series
in ¢,, and that if only terms linear in c, are re-
tained one finds

MG, w?) >{c, AT (@?)/[1 -1 J ()] V(@) ,

where A= (m, - m,)/m,. This result is identical
with that quoted by A. W. B. Taylor.! The more
general result given in Eqgs. (21)-(24), however,
satisfies the symmetry criterion noted by D. W.

Taylor. ’

In the special case of a cubic crystal structure,
our result simplifies considerably, since then
J;;(w?) reduces to a scalar function of w? and so,
consequently, does F;;(w?). We then have

Ly V@
3N i,a(wz—F(wz)V(cI))ii

1 . Q2.

= — —_—as

" 3N Z- wi-F)Rd

a8

J(w?)

where §33 is the frequency of the normal mode of
wave number § and polarization § in a perfect
crystal of atoms of mass m. If we define g,(Q%)
as the density of normal modes per unit squared
frequency in such a crystal, then

1 Q2
J(wz): mfm go(ﬂa) dﬂz (25)
and

g(w2)= - % Imfﬁm gO(QZ) as? s (26)

with w? again assumed to have a vanishingly small

FIG. 4. Approximation for Min the special case of
a random substitutional alloy.

P. L. TAYLOR AND S.-Y. WU 2

positive imaginary part. The function J(w?) may
then quickly be computed from Eq. (25) and the
scalar version of Eq. (23) by an iterative method
for any given form of g,(Q%). The frequency spec-
trum of the alloy is then determined from Eq.
(26).

In his study of the disordered substitutional alloy,
Maris? has considered the special case where the
masses of the two constituents are approximately
equal. His method involved a diagrammatic ex-
pansion in which those terms of fourth or higher
order in the small parameter = (m, - m,)/m,
were ignored. The results of the present paper re-
duce to those of Maris when the right-hand side of
Eq. (23) is rewritten as a power series in \; this
is to be expected, since all the diagrams considered
by that author are included in the present approxi-
mation.

IV. AMORPHOUS SYSTEMS

In an amorphous solid the matrix R defined in
Eq. (9) will not vanish. The matrix elements R,
will be functions of §—q' of random and rapidly
varying phase, and of a modulus governed by the
relation

|Rgge [2= N[ [! @@ dF +1]

with p(¥) the probability that any particular atom
has a neighbor at a vector distance 7 from it and
with dF an element of volume. The quantity |Rgq |2
is directly available for many materials from
measurements of the diffraction intensities of neu-
trons and x rays.

The nature of most glasses and amorphous solids
is such that p(¥) tends to have the form shown in
Fig. 5; no two atoms have their equilibrium posi-
tions closer than some distance a, and there is a

pin

r

FIG. 5. Pair distribution function p () for a
particular direction of T.
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distance b beyond which p(f) is very close to a value
of N/Q. The quantity |Rg |2 accordingly has the
form shown in Fig. 6, and exhibits its first maxi-
mum when |§-q’| is of the order of 27(N/Q)Y3,

For small values of {d—d’| this function will vary
as

| Ry

2~(1/6N)|q - §'| %2

with 7, a length related to b and defined by the re-
lation

F= [ F2[N/9-p(F)] AF
The density fluctuations in many glasses may be
thought of as due to regions of compaction in which
the atomic density is increased by only a small
fraction of its average value while b is only of the
order of magnitude of a few interatomic spacings.
Let us now choose for our transformation the N
allowed wave vectors § defined by the condition
11 < (6BN7°/Q)Y3. An expression of the Dysonian
M ;(§, ?) in powers of R now becomes reasonable,
since for the most part the wave numbers will be
such that IRaar I2<< l/N.

This may be illustrated by a consideration of
some of the more important terms entering the ex-
pansion for M;;(d, ?). The sixth diagram in Fig.
3, for example, contains a factor of R?, the prin-
cipal contribution of which comes from the diagonal
element (R%);;. Now

(Rz)ﬁ:N -2 v ei(&'-i’ yo (1-1)
L,1%¢ D

Q 2o 1.7 Y- "_': -
- 3 el )fe e d-igg_q
1,1
with the integration over the volume element da'
in wave-number space being limited to a sphere of
radius ¢p=(6N7°/Q)3. We then find that with the
definition of the function

S (x) = 3(sinx — xcosx)/x°

we can write
(R2)ss =Nt ‘Z; ei6°(1u1')g(qDIi_i/‘)_1
1,1

-
qq

= | &' G(gp| F| )p(F) GF (27)
If we had been considering a perfect Bravais lattice
instead of an amorphous solid, we should have
found an expression similar to Eq. (27), but with
the difference that § would havebeen replacedwith
a function that vanished at every lattice point i
Since then p(¥) would have been nonzero only at
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’ qu"

la-a’|

FIG. 6. Function |Rge 12 shown here is related to the
Fourier transform of p(¥).

precisely those same points, the integrand [and
hence (R?);;] would have vanished. In an amor-
phous solid, on the other hand, there will be a
finite overlap of the functions G(g,I¥!) and p(¥),
and (R?®)z; will not vanish. It will, however, in
general be small, since the first maximum of p(¥)
will still occur close to the value of |T| at which
G (gplT1) first vanishes.

The presence of factors of R in the perturbation
expansion is not the only consequence of the amor-
phous nature of the solid that we are considering.
We must also take note of the variation with posi-
tion I of the function Uj;(i,d’) defined in Eq. (15).
Although it is not possible to make many general
statements about the form of U;;(i,d’), there are
some notable simplifications that appear when
specific glassy systems are considered. In a tet-
rahedrally coordinated glass, for example, U, j(f, )
will be very small for small ¢’ as a consequence
of the fact that U;(i, 0) vanishes for an atom in a
perfect tetrahedrally symmetric environment.
There is also experimental evidence that correla-
tions in U“(f, d’) do not extend beyond nearest
neighbors in some such systems. We shall, how-
ever, postpone detailed computations of the form of
these spectra to a later publication.
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